Войти
ТехМастер. Установка, настройка. Правила эксплуатации
  • Как готовится имбирный чай
  • Для самых маленьких: детская атеистическая литература в ссср
  • Джозеф Смит - основатель секты мормонов
  • Основы применения магических мантр Мантры - как магические формулы
  • Зачем нужен лунный календарь
  • Александр михайлович соколов: интервью
  • Пластмасса. Пластмассы (история изобретения) Научное название пластика

    Пластмасса. Пластмассы (история изобретения) Научное название пластика

    Роль и значение пластмассы в современном мире растет стремительными шагами. На сегодняшний день не существует такой сферы деятельности, где бы не использовалась пластмасса. Пластмассовая продукция обладает такими преимуществами, как легкость, экономичность, надежность, качественность, а также, что немаловажно, она является энергосберегающей.

    Пластмасса представляет собой искусственный материал, который состоит из цепочек полимеров. Комбинацией таких цепочек обусловливаются особенности материала. К примеру, твердый пластик может прийти на смену металлу в изготовлении автомобилей, а мягкий – идеально подходит для изготовления таких тканей, как искусственная кожа и мех. Изделия, сделанные из пластмассы, как уже было сказано выше, используются во многих сферах промышленности, но не во всех. Однако с каждым годом область применения пластика становится все шире и шире. В настоящее время невозможно представить себе мир без пластмассовой продукции. Но впервые пластмасса появилась относительно не так давно - всего лишь 150 лет тому назад.

    Изобретателем пластика является сталелитейщик и изобретатель из Бирмингема Александр Паркс. Он, для производства пластмассы, пускал в ход нитроцеллюлозу – это целлюлоза, пропитанная азотной кислотой, а также спирт и камфору.

    Своему изобретению Паркс дал название паркезин. Данный материал появился в 1862 году на Большой Международной выставке, которая проходила в Лондоне.

    А в 1866 году Александр Паркс основал фирму «Parkesine Company», которая занималась массовым производством паркезина. Однако, в 1868 году, его компания обанкротилась из-за плохого качества пластика, потому как Паркс старался минимизировать расходы на изготовление пластиковой продукции.

    Спустя некоторое время, на смену паркезина пришел ксилонит, который производился компанией Даниэля Спилла, а также целлулоид, изготавливаемый Джоном Весли Хайатом. В 1870 году он зарегистрировал торговую марку «Celluloid».

    Несмотря на то, что от ослепительно яркого света целлулоид менял свою цветовую гамму и становился более хрупким, из него делали очень много вещей - начиная от бильярдных шаров и заканчивая фотопленкой.

    Пакеты, которыми мы так широко пользуемся в быту, изготавливают их полиэтилена. Изобретателем данного материала является Ганс фон Пехманн. Он впервые получил этот материал в 1899 году. Однако на тот момент его изобретение не получило массового распространения, но вторую жизнь полиэтилен все-таки получил благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Это случилось в 1933 году. С самого начала полиэтилен применяли в создании телефонного кабеля и, только в 1950-е годы, данный материал стали использовать в пищевой промышленности в качестве упаковки.

    Один из самых многофункциональных пластиковых материалов является поливинилхлорид. Из такого материала производят одежду, обувь, аксессуары, зубные щетки, стеновые панели и так далее. ПВХ так же, как и полиэтилен, появился случайно. Его создал французский химик и физик Анри Виктор Реньо. В 1835 году Реньо с помощью присоединения ацетилена к хлористому водороду получил такое вещество, как винилхлорид, а в 1838 французский химик синтезировал полимер поливинилиденхлорид, который был получен на его основе.

    На сегодняшний день пластмассовые изделия совершили грандиозную революцию. Из пластмасс можно производить не только радиоприемники, часы, коробки, автомобили, радиоприемники, но и дома, обувь и даже гроб.

    История пластмассы очень захватывающая. Ниже приведены даты самых важных событий в истории пластика за последние 150 лет.

    Обратите внимание на то, как много видов пластика имеют знакомые торговые названия, как например тефлон (Teflon) и пенопласт (Styrofoam).

    Что более интересно, так это то, сколько известных видов пластика на самом деле были обнаружены случайно!

    Ранние годы пластика

    • 1862 г - открытие паркезина . Паркезин - первый искусственный пластик, который был создан Александром Парксом в Лондоне и представлял собою органический материал, полученный из целлюлозы. После нагревания и предания формы его охлаждали и он сохранял полученную форму;
    • 1863 г открытие нитрата целлюлозы или целлулоида . Материал был открыт Джоном Уэсли Хайатом, когда он пытался найти замену слоновой кости в бильярдных шарах. Целлулоид (Celluloid) стал известен как материал, использующийся в первой гибкой кинопленке для фотографии и кино;
    • 1872 г - открытие поливинилхлорида (ПВХ) . Впервые поливинилхлорид был создан немецким химиком Евгением Бауманом, который так и не запатентовал свое открытие. В 1913 году его соотечественник Фридрих Клатте изобрел новый метод полимеризации винилхлорида с использованием солнечного света. Именно он стал первым изобретателем, который получил патент на поливинилхлорид. Тем не менее, применятся ПВХ стал только после того, как в 1926 году Вальдо Семон усовершенствовала материал.

    Период перед Второй мировой войной

    • 1908 г - открытие целлофана ®. В 1900 году швейцарского инженера текстильной промышленности Жака Э. Бранденбергера впервые посетила мысль создать прозрачный, защитный материал для упаковки . В 1908 году он разработал первую машину по производству прозрачных листов регенерированной целлюлозы. Первым клиентом Жака стала американская компания по производству конфет «Whitman’s», которая решила использовать целлофан для обертывания шоколада;
    • 1909 г - открытие бакелита . Бакелит (полиоксибензилметиленгликольангидрид) был одним из первых видов пластика, изготовленных из синтетических компонентов. Он был разработан химиком Лео Бекеландом, уроженцем Бельгии, проживавшим в Нью-Йорке. Бакелит, фенолформальдегидная термореактивная смола, благодаря его низкой электрической проводимости и термостойким свойствам применяется в электрических изоляторах , корпусах для радио и телефонов и в таких разнообразных изделиях, как посуда, ювелирные изделия, трубы и детские игрушки;
    • 1926 г - открытие винила или ПВХ . Винил был изобретен в США Вальтером Симоном, исследователем из компании по производству компонентов для самолетов «B.F. Goodrich». Впервые материал был использован в шарах для гольфа и каблуках. Сегодня винил является вторым самым производимым пластиком в мире и используется во многих изделиях, таких как занавески для душа, плащи, провода, различные приборы, напольная плитка, краски и поверхностные покрытия;
    • 1933 г - открытие поливинилиденхлорида (ПДВХ/PVDC) или сарана (Saran) . Материал был случайно обнаружен Ральфом Вайли в лаборатории американской химической компании «Dow Chemical» и был впервые использован военными для покрытия им истребителей для защиты от соленой морской воды. Производители автомобилей также использовали поливинилиденхлорид в качестве обивочного материала. После Второй мировой войны компания нашла способ избавиться от зеленого цвета и неприятного запаха сарана и, таким образом, его одобрили для изготовления в качестве упаковочного материал для пищевых продуктов . В 1953 году его стали продавать под торговым именем «Saran Wrap»®;
    • 1935 г - открытие полиэтилена низкой плотности (ПЭВД/LPDE) . Этот материал был обнаружен Реджинальдом Гибсоном и Эриком Фосеттом в лаборатории британского промышленного гиганта «Империя химической промышленности» (Imperial Chemical Industries) в двух видах: полиэтилен низкой плотности (ПЭВД /LDPE) и полиэтилен высокой плотности (HDPE/ПЭНД) . Полиэтилен является дешевым, гибкий, прочный и химически стойким материалом. ПЭВД используется для изготовления пленок и упаковочных материалов , в том числе и полиэтиленовых пакетов. ПЭНД чаще всего используется для изготовления контейнеров, сантехники и автомобильных запчастей ;
    • 1936 г - открытие полиметилметакрилата (ПММА) или акрила . К 1936 году американские, британские и немецкие компании производили полиметилметакрилат, более известный как акрил. Хотя акрил в наши дни широко применяется в жидком виде красках и синтетических волокнах, в твердом виде он довольно крепкий и более прозрачный, чем стекло. Торговые марки «Plexiglas» и «Lucite» продают акрил как заменитель стекла ;
    • 1937 г - открытие полиуретана . Полиуретан - органический полимер , который был изобретен химиком Отто Байером из немецкой компании «Фридрих Байер и Компания». Полиуретаны используются в виде эластичного пенопласта в обивке, матрацах, затычек для ушей, химически стойких покрытиях, в специальных клеях, в герметиках и упаковке. В твердой форме полиуретан используется в материалах для термоизоляции зданий , в водонагревателях, при рефрижераторных перевозках, при коммерческих и некоммерческих охлаждениях. Полиуретаны продаются под торговыми названиями «Igamid»® в качестве пластмассовых материалов и «Perlon»® в качестве волокон;
    • 1938 г - первое применение полистирола . Полистирол был впервые обнаружен в 1839 году немецким аптекарем Эдуардом Симоном, но его начали применять только в 1930-х годах, когда ученые из самой крупной химической компании в мире «BASF» разработали коммерческий способ изготовления полистирола. Полистирол является прочным пластиком, который можно изготавливать литьем под давлением, прессованием, экструзией или формованием с раздувом. Материал широко применяется в пластиковых стаканах, картонных коробках для яиц, в упаковках для арахиса, а также в строительных материалах и электроприборах ;
    • 1938 г - открытие политетрафторэтилена (ПТФЭ) или тефлона . Полимер был открыт случайно химиком Ройем Планкеттом, работавшим тогда на американскую химическую компанию «DuPont». ПТФЭ был одним из самых широко применяемых пластиков на войне, который (совершенно секретная информация!) наносили на металлические поверхности в качестве защитного покрытия с низким коэффициентом трения для предотвращения царапин и коррозии. В начале 1960-х годов огромной популярностью стали пользоваться тефлоновые антипригарные сковороды. ПТФЭ был позже использован для синтеза первых мембранных тканей «Gore-Tex». Смешивая тефлон с соединениями фтора, получают материал, который используется для изготовления ложных ракет, чтобы отвлечь ракеты с тепловым наведением;
    • 1938 г - открытие нейлона и неопрена . Оба материала были разработаны Уоллесом Каротерсом, когда его команда исследователей из компании «DuPont» пыталась найти синтетическую замену шелку. Неопрен, синтетический каучук, был впервые изготовлен в 1931 году. Дальнейшие исследования полимеров привели к развитию нейлона, известный также как «чудо-волокно». В 1939 году компания «DuPont» впервые объявила и продемонстрировала нейлон и нейлоновые чулки американской общественности на Всемирной выставке в Нью-Йорке. Также нейлон ранее применялся в изготовлении лески, хирургической нити и зубной щетки;
    • 1942 г - открытие ненасыщенного полиэстера или ПЭТ (еще называют полиэфир, лавсан и дакрон ). Материал был запатентован английскими химиками Джоном Рекс Уинфилдом и Джеймсом Теннант Диксоном и применялся для изготовления синтетических волокон , которые продавали в послевоенное время. Так как полиэстер более плотный по сравнению с другими дешевыми видами пластмассы, его применяют в изготовлении бутылок для газированных и кислых напитков. И так как полиэстер также крепкий и устойчивый к стиранию, он используется для изготовления механических запчастей , пищевых подносах и других предметах. Пленка из полиэстера от компании «Mylar» используются в аудио и видео кассетах.

    Фторопласт обладает довольно низким коэффициентом трения, хорошей износостойкостью, стойкостью к воздействиям повышенных температур, благодаря чему успешно используется в различных отраслях.

    Важные открытия после Второй мировой войны

    • 1951 г - открытие полиэтилена высокой плотности или полипропилена . Два американских химика Пол Хоган и Роберт Бэнкс, работающие в нефтяной компании «Phillips Petroleum» в Нидерландах, нашли способ производства кристаллического полипропилена. Полипропилен похож на своего «родственника» полиэтилена и его стоимость относительно низкая, но в отличие от полиэтилена, он гораздо более крепкий и используется практически повсюду, начиная с изготовления пластиковых бутылок и заканчивая коврами и пластиковой мебелью. Применяют его очень активно и в автомобильной промышленности;
    • 1954 г - открытие пенополистирола (Styrofoam) или пенопласта . Английское обозначение пенополистирола «Styrofoam» а качестве торгового названия позаимствовала химическая компания «The Dow Chemical Company». Пенопласт был изобретен случайно ученым Рэем Макинтайром, который пытался изготовить гибкий электрический изолятор, комбинируя стирол с изобутиленом под давлением, что являлось довольно взрывоопасным соединением. В результате его эксперимента был открыт пенополистирол с пузырьками, который в 30 раз легче обычного полистирола.

    Оглянитесь вокруг комнаты, где Вы находитесь прямо сейчас, и подсчитайте, сколько предметов полностью или частично состоят из пластика. Вы сразу увидите, насколько пластик вездесущ. Он действительно везде!

    Видео: "Пластик - уникальный синтетический материал"

    Что за материал используется при производстве пластиковых тар. Чем пластики отличаются друг от друга? Пластмасса

    Определить вид пластмассы, если имеется маркировка, достаточно легко - а как быть, если никакой маркировки нет, а узнать, из чего сделана вещь - необходимо?! Для быстрого и качественного распознавания различных видов пластмасс достаточно немного желания и практического опыта. Методика достаточно проста: анализируются физико-механические особенности пластмасс (твердость, гладкость, эластичность и т. д.) и их поведение в пламени спички (зажигалки).Может показаться странным, но различные виды пластмасс и горят по-разному! Например, одни ярко вспыхивают и интенсивно сгорают (почти без копоти), другие, наоборот, сильно коптят. Пластмасса даже издаёт разные звуки при своем горении! Поэтому так важно по набору косвенных признаков точно идентифицировать вид пластмассы, ее марку.

    Как определить ПЭВД (полиэтилен высокого давления, низкой плотности) . Горит синеватым, светящимся пламенем с оплавлением и горящими потеками полимера. При горении становится прозрачным, это свойство сохраняется длительное время после гашения пламени. Горит без копоти. Горящие капли, при падении с достаточной высоты (около полутора метров), издают характерный звук. При остывании, капли полимера похожи на застывший парафин, очень мягкие, при растирании между пальцами- жирны на ощупь. Дым потухшего полиэтилена имеет запах парафина. Плотность ПЭВД: 0,91-0,92 г/см. куб.

    Как определить ПЭНД (полиэтилен низкого давления, высокой плотности) . Более жесткий и плотный чем ПЭВД, хрупок. Проба на горение - аналогична ПЭВД. Плотность: 0,94-0,95 г/см. куб.

    Как определить Полипропилен. При внесении в пламя, полипропилен горит ярко светящимся пламенем. Горение аналогично горению ПЭВД, но запах более острый и сладковатый. При горении образуются потеки полимера. В расплавленном виде - прозрачен, при остывании - мутнеет. Если коснуться расплава спичкой, то можно вытянуть длинную, достаточно прочную нить. Капли остывшего расплава жестче, чем у ПЭВД, твердым предметом давятся с хрустом. Дым с острым запахом жженой резины, сургуча.

    Как определить Полиэтилентерафталат (ПЭТ) . Прочный, жёсткий и лёгкий материал. Плотность ПЭТФ составляет 1, 36 г/см.куб. Обладает хорошей термостойкостью (сопротивление термодеструкции) в диапазоне температур от - 40° до + 200°. ПЭТФ устойчив к действию разбавленных кислот, масел, спиртов, минеральных солей и большинству органических соединений, за исключением сильных щелочей и некоторых растворителей. При горении сильно коптящее пламя. При удалении из пламени самозатухает.

    Полистирол . При сгибании полоски полистирола, легко гнется, потом резко ломается с характерным треском. На изломе наблюдается мелкозернистая структура.Горит ярким, сильно коптящим пламенем (хлопья копоти тонкими паутинками взмывают вверх!). Запах сладковатый, цветочный.Полистирол хорошо растворяется в органических растворителях (стирол, ацетон, бензол).

    Как определить Поливинилхлорид (ПВХ). Эластичен. Трудногорюч (при удалении из пламени самозатухает). При горении сильно коптит, в основании пламени можно наблюдать яркое голубовато-зеленое свечение. Очень резкий, острый запах дыма. При сгорании образуется черное, углеподобное вещество (легко растирается между пальцами в сажу).Растворим в четыреххлористом углероде, дихлорэтане. Плотность: 1,38-1,45 г/см. куб.

    Как определить Полиакрилат (органическое стекло). Прозрачный, хрупкий материал. Горит синевато-светящимся пламенем с легким потрескиванием. У дыма острый фруктовый запах (эфира). Легко растворяется в дихлорэтане.

    Как определить Полиамид (ПА). Материал имеет отличную масло-бензостойкость и стойкость к углеводородным продуктам, которые обеспечивают широкое применение ПА в автомобильной и нефтедобывающей промышленности (изготовление шестерен, искуственных волокон…). Полиамид отличается сравнительно высоким влагопоглощением, которое ограничивает его применение во влажных средах для изготовления ответственных изделий. Горит голубоватым пламенем. При горении разбухает, “пшикает”, образует горящие потеки. Дым с запахом паленого волоса. Застывшие капли очень твердые и хрупкие. Полиамиды растворимы в растворе фенола, концентрированной серной кислоте. Плотность: 1,1-1,13 г/см. куб. Тонет в воде.

    Как определить Полиуретан. Основная область применения - подошвы для обуви. Очень гибкий и эластичный материал (при комнатной температуре). На морозе - хрупок. Горит коптящим, светящимся пламенем. У основания пламя голубое. При горении образуются горящие капли-потеки. После остывания, эти капли - липкое, жирное на ощупь вещество. Полиуретан растворим в ледяной уксусной кислоте.

    Как определить Пластик АВС . Все свойства по горению аналогичны полистиролу. От полистирола достаточно сложно отличить. Пластик АВС более прочный, жесткий и вязкий. В отличие от полистирола более устойчив к бензину.

    Как определить Фторопласт-3. Применяется в виде суспензий для нанесения антикоррозийных покрытий. Не горюч, при сильном нагревании обугливается. При удалении из пламени сразу затухает. Плотность: 2,09-2,16 г/см.куб.

    Как определить Фторопласт-4. Безпористый материал белого цвета, слегка просвечивающийся, с гладкой, скользкой поверхностью. Один из лучших диэлектриков! Не горюч, при сильном нагревании плавится. Не растворяется практически ни в одном растворителе. Самый стойкий из всех известных материалов. Плотность: 2,12-2,28 г/см.куб. (зависит от степени кристалличности - 40-89%).

    Физико-химические свойства отходов пластмасс по отношению к кислотам

    Наименование
    отхода
    Воздействующие факторы
    H 2 SO 4 (к)
    Хол.
    H 2 SO 4 (к)
    Кипяч.
    HNO 3 (к)
    Хол.
    HNO 3 (к)
    Кипяч.
    HCl (к)
    Хол.
    HCl (к)
    Кипяч.
    Бутылки
    из-под
    кока-колы
    Без изменений
    Приобрели окраску
    Сворачива-ются
    Без изменений
    Без изменений
    Без изменений
    Образцы свернулись
    Пластико-вые пакеты
    Без изменений
    Практически растворились
    Без изме-нений
    Без изменений
    Без изменений
    Образцы
    раствори-лись

    Физико - химический свойств отходов пластмасс отходов пластмасс по отношению к щелочам

    ЛЮБОЙ пластик выделяет в содержимое бутылки химикаты разной степени опасности.

    Во второй половине XIX в. ученые активно работали над созданием искусственных материалов. Первым добился успеха английский химик Александр Парке. В 1862 г. он получил из нитроцеллюлозы твердый материал цвета слоновой кости и назвал его паркезин.

    Пластмассы на биологической основе

    Спустя несколько лег американцу Джону Уизли Хайатту удалось получить целлулоид из целлюлозы и тем самым положить начало коммерческому производству пластмасс. Сначала новый материал использовался для изготовления бильярдных шариков, но вскоре нашел применение в самых разных областях — прежде всего в производстве пленки для фотографии и кино. Новое семейство пластмасс возникло в 1897 г. в немецких химических лабораториях — материалы на основе казеина, получившие коммерческое название «галалит». Его использовали сначала для производства бижутерии, пуговиц и ручек для зонтов, а позже для изоляции электроприборов.

    Синтетические пластмассы

    В 1909 г. бельгиец Лео Хендрик Бакеланд. работавший в США, получил первую полностью синтетическую пластмассу на основе фенола и формальдегида, названную в его честь «бакелит. Новый материал принадлежал к группе так называемых дуропластов. которые, в отличие от изобретенных позднее термопластов, не размягчаются при нагревании. Вскоре из него стали делаться корпуса разнообразнейшей бытовой техники: телефонов, радио, телевизоров и тд.

    Эра полиамидов

    Молекулярную струлегуру пластмасс, их химическое строение описал в 1922 г. немецкий химик Герман Штаудингер в своей книге по теории полимеров. В 1953 г. он получил за нее Нобелевскую премию по химии. Открытия Штаудингера позволили целенаправленно создавать новые синтетические материалы, разработка которых продолжается и по сей день.

    В 1927 г. в Германии началось производство синтетической резины, так называемого буна-каучука. Вскоре появились и другие искусственные резины, в том числе «неопрен» американца Уолласа Каротерса (1931). В 1929 г. ацетил целлюлоза, создание швейцарцев Камиля и Анри Дрсйфюсов, дала возможность производить лаки, эмали, текстильные волокна и целлофановую пленку. На сегодняшний день существуют десятки разнообразнейших синтетических материалов и столько же способов их изготовления.

    • 1900 г.: Фредерик Стенли Киппинг создал искусственный шелк на основе кремний-кислородных соединений.
    • 1913 г.: Фриц Клалте заложил основы производства ПВХ.
    • 1935 г.: Уоллас Хьюм Каротерс изобрел нейлон.
    • 1942 г.: начинается массовое производство жидкого, эластичного и твердого силикона.

    Слово «полимер» — греческого происхождения. Буквально, полимер — это молекула, состоящая из многих («поли») частей («мерос»), каждая из которых представляет собой мономерную, то есть состоящую из одной («монос») части, молекулу. Проще говоря, полимеры — это разветвленные цепочки из обычных молекул, мономеров.

    Так выглядит процесс выработки пластика сегодня


    На наших глазах вилка исчезает


    Как растят суперпластик Ученые создали генетически модифицированное растение, в семенах которого содержится органический полимер PHBV. Из него делают саморазрушающийся термопластик. Некоторые виды бактерий вырабатывают полимеры вроде PHBV, используя их как хранилище энергии, как крахмал у растений или гликоген у животных

    В XX веке человечество пережило синтетическую революцию. Ее главным завоеванием можно смело назвать изобретение пластика. Сейчас даже трудно представить себе, что еще в начале прошлого века его просто не существовало и все вокруг делалось из модных нынче натуральных материалов.

    Игра в мяч

    Человечество, можно сказать, доигралось до изобретения пластика. В истории этого материала прослеживается мистическая связь с любовью людей к игре с мячом. Во II веке до нашей эры греки играли в мяч из желчного пузыря свиньи, наполненного воздухом. Этот спортивный снаряд по форме напоминал яйцо или, если угодно, мяч для регби. Уже тогда наши предки искали способ исправить форму мяча и сделать его абсолютно круглым. Древние греки без конца пробовали различные растительные добавки, чтобы придать стенкам свиного пузыря эластичность.

    Индейцы майя делали мяч из кожуры плодов, обернутой в натуральный каучук, который они добывали из фикусов. Похожую технологию использовали жители островов Океании и Юго-восточной Азии. До ума, впрочем, ее довели только европейцы. В XIX веке из Малайзии в Европу было привезено гуттаперчевое дерево, из млечного сока которого стали добывать гуттаперчу. Первым изделием из нового материала стали шары для гольфа (а вовсе не цирковые мальчики). Сегодня этот материал используют для изоляции подводных и подземных кабелей и производства клеев.

    От мяча эстафетная палочка перешла к бильярду. В 1862 году британский химик Александр Паркес решил придумать дешевый заменитель дорогостоящей слоновой кости, из которой делались бильярдные шары. Результатом стало открытие первого пластификатора.

    Сперва Паркес изобрел нитроцеллюлозу. Однако ее свойства не подходили для игральных шаров, так как материал оказался легкобьющимся. Нужна была добавка, которая смягчила бы его, не уменьшив главное полезное свойство — упругость. Паркес решил добавить камфору. Смесь нитроцеллюлозы, камфоры и спирта подогревалась до текучего состояния, далее заливалась в форму и застывала при нормальном атмосферном давлении. Так на свет появился паркезин — первый полусинтетический пластик. Увы, как это часто бывает, его первооткрыватель не добился коммерческого успеха.

    Зато последователь Паркеса, американец Джон Хайт, заработал на первом пластике целое состояние. Он основал компанию и стал производить расчески, игрушки и массу других изделий из целлулоида. К сожалению, материал оказался высоковоспламеняемым, поэтому сейчас из него делают лишь шарики для настольного тенниса да школьные линейки.

    В 1897 году немецкие химики открыли казеин — протеин, образующийся при сворачивании молока под действием протеолитических ферментов (тех самых веществ, с помощью которых мы перевариваем пищу). Ученые обнаружили, что казеин придает материалам эластичные свойства, а при остывании — твердость и прочность. Из казеина наладили выпуск пуговиц и вязальных спиц.

    Первый полностью синтетический пластик был разработан Лео Беикеландом в США в 1907 году. Беикеланд искал синтетический заменитель для шеллака — воскообразного вещества, выделяемого тропическими насекомыми. Его в огромных количествах потребляла граммофонная и электротехническая промышленность: из шеллака делали пластинки и изоляторы. Ученый изобрел жидкое вещество, напоминающее смолу, которое после застывания превращалось в материал с удивительными свойствами. Изделия из него были прочными и не растворялись даже в кислоте. Первые телефонные аппараты были сделаны именно из находки Беикеланда. Пластик мгновенно (менее чем за год) распространился по всему миру.

    Начало биоэры

    Однако пластик, кроме всех своих замечательных свойств, имеет два важных недостатка. Во‑первых, он производится из невосстанавливаемых природных ресурсов — нефти, угля и газа. Во‑вторых, его главное достоинство — долговечность, — за которым так гнались изобретатели пластика в начале прошлого столетия, сегодня обернулось недостатком. Чем больше пластмассы мы используем, тем быстрее растут горы отходов, которые не разлагаются в среде ни при каких условиях. Миллионы тонн пластика скапливаются в природе, загрязняя окружающую среду.

    Поэтому ближе к концу прошлого столетия ученые задумались о том, чтобы создать материал, схожий по свойствам с пластиком. При этом требовалось, чтобы заменитель пластика можно было делать из возобновляемых компонентов (например, растений) и чтоб он был по зубам бактериям, то есть мог разлагаться в природных условиях. В середине 1990-х, как грибы после дождя, стали появляться сенсационные сообщения об изобретении биопластика — пластика из натурального крахмала, разлагающегося под воздействием различных микроорганизмов. Но тогда о крупномасштабном внедрении новшества в нашу повседневную жизнь не могло быть и речи: производство биопластика оказалось слишком дорогим удовольствием.

    С наступлением нового века ситуация изменилась кардинальным образом. Ученые нашли способ снизить себестоимость изготовления биопластика и утверждают, что в скором времени она приблизится к стоимости изготовления обычной пластмассы. Более того, некоторые эксперты считают, что цена на разлагаемую пластмассу искусственно завышается коммерческими производителями и нефтяными компаниями (нефтяники не жалуют биопластик потому, что его массовое производство может привести к падению цен на нефть). А ведь, если посчитать затраты на переработку пластмассовых отходов и внести эту цифру в стоимость обычного пластика, еще неизвестно, какой из них будет дороже.

    Пластиковые плантации

    Обычный пластик не поддается разложению в среде из-за того, что он состоит из слишком длинных полимеров, которые тесно связаны друг с другом. Совсем по‑иному ведет себя пластик, содержащий более короткие натуральные полимеры растений.

    Биопластик можно делать из крахмала, который является природным полимером и производится растениями в процессе фотосинтеза. В большом количестве крахмал содержится в злаковых, картофеле и других неприхотливых растениях. Урожай крахмала с кукурузы доходит до 80% от всей собранной зеленой массы. Поэтому производство пластика нового поколения должно стать достаточно рентабельным. Биопластик ломается и крошится при любой температуре, в которой активны микроорганизмы. Остаточными продуктами этого процесса являются двуокись углерода и вода.

    Из-за того что крахмал хорошо растворяется в воде, изделия из него легко деформируются при малейшем контакте с влагой. Для того чтобы придать крахмалу большую прочность, его обрабатывают специфическими бактериями, разлагающими полимеры крахмала в мономеры молочной кислоты. Затем химическим способом мономеры заставляют соединиться в цепочки полимеров. Эти полимеры гораздо прочнее, но при этом не так длинны, как полимеры пластмассы, и могут разлагаться микроорганизмами. Полученный материал назвали полилактидом (PLA). В прошлом году в штате Небраска открылся первый в мире завод по изготовлению PLA.

    Другой способ получения биопластика заключается в использовании бактерий Alcaligenes eutrophus. В процессе своей жизнедеятельности они производят гранулы органического пластика, получившего название «полигидроксиалканонат» (PHA). Уже были проделаны успешные эксперименты по внедрению генов этих бактерий в хромосомы растений, чтобы те смогли в дальнейшем производить пластик внутри своих собственных клеток. Это означает, что пластик можно буквально выращивать. Правда, такой способ пока остается дорогостоящим. К тому же, так как процесс включает в себя вмешательство на генетическом уровне, он имеет и своих противников.

    Кукурузные вилки

    Биопластики уже сегодня находят широкое практическое применение во многих странах. Полилактид можно использовать для производства одноразовых подгузников и посуды. Он не вреден для человеческого организма, поэтому не так давно его начали применять в медицине в качестве основы для временных имплантатов и хирургических ниток. «Кукурузные» изделия могут быть сделаны с расчетом на срок самораспада, который требует специфика его употребления. Некоторые виды биопластика растворяются очень быстро, другие могут служить месяцы, а то и годы.

    Итальянская компания Novamont уже давно приступила к выпуску биопластика под названием MaterBi. В Австрии и Швеции McDonald’s предлагает в своих ресторанах «кукурузные» вилки и ножи, компания Goodyear выпустила первые биошины Biotred GT3, а магазины Carrefour во Франции, Esselunga в Италии и CoOp в Норвегии продают свои товары в биопластиковых пакетах из того же MaterBi.

    Австралийские ученые из Исследовательского международного центра продовольственной и упаковочной индустрии тоже рекламируют свою продукцию из кукурузного крахмала. Среди новшеств — горшки для рассады, которые саморазлагаются в почве под воздействием влаги, и черная пленка, замечательные свойства которой порадуют любого огородника.

    Уже появились идеи производства не просто одноразовых биоупаковок, а пищевых упаковок, которые содержали бы в себе специфичные бактерии, убивающие патогены — возбудителей различных болезней. Одним из самых опасных патогенов является бактерия под названием «листерия». Она развивается в пищевых продуктах даже при низких температурах и может стать причиной смертельной болезни, сопровождающейся высокой температурой и тошнотой. Ученые из Университета Клемсон изобрели биопластик, который содержит бактерии низина, не позволяющие листерии размножаться. Низин представляет собой антибиотик, который вырабатывается молочнокислыми бактериями Streptococcus lactis. Он безвреден для живого организма и быстро разрушается ферментами человеческого кишечника.

    Есть и другие не менее интересные проекты. Фантазии исследователям не занимать. Так что вполне может статься, скоро горы мусора из долговечного пластика уйдут в прошлое, а на их месте будут построены заводы по выпуску «кукурузных» пластмассовых изделий.